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NON-TECHNICAL SUMMARY

We suppose that a complex machine, consisting of m parts, has

broken down. Checking the 1th part leads to a cost c, and spots the

i
defect with probability a, if the fault is there. Ar discrete time

i
points we must decide either to check one of the parts cr else to
junk the machine. Junking the machine might be done, tor instance,
if we felt that the fault was in a part which would be too expensive
to detect. A penalty co:z R is incurred if the machine is junked.
The problem is posed as a sequential search and stop model which
is shown to include the above in a special case. A prior probability

vector P = (P....PP) is given - i.e. P, = P {fault in jth part}, and

h|
a major result is that in the above problem an optimal policy either
searches a part with the maximal present probabilityv per cost of

finding the fault there, or else it junks the machine.




e Yo e i o s R )

A PROBLEM IN OPTIMAL SEARCH AND STOP
Sheldon M. Ross

1. Introduction and Summary

The following model has been considered in the literature: We are told
that an object is hidden in one of m boxes a.d we are given prior probh-
abilities po 1=1,2, ..., m (Tp) = 1) that the object is in the i'"
box. A search of box i costs c; (ci > 0), and finds the object with
probability a, if the object Is in the box (i.e. 1 - a, is the over-
look probability for the 70 box). At the beginning of each time

period t = 1, 2, ... a box is searched; and the process ends when th:

object is found.

Blackwell (sce [S]) has shown that the strategy which at time t se:rches
a box with the largest present value of aipi/c‘ minimizes the expected
searching cost; (where P; is the posterior probability at time t that
the object is in box i). Chew [3] and Kadane [4] have shown that if

< 1 then this strategy also maximizes the probability that the

searching cost wi!l be less than A for every A > 0.

R T I T T SR

In this paper in order to motivatz the search we suppose that a reward
, . . ; \ . th

Ri iml, ..., m is earnezd if the object is found in the it box. We

also suppose that the searcher may decide to stop searching at any time

(for example he may feel that the rewards are not large enough to justify
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the searching costs). |f the searcher decides to stop before finding the
object then from that polnt on he Incurs no further costs and of course

recelives no reward.

In the second section of this naper we show that an optimal strategy
exists and s defined by a functlional equation. The optimal strategy
Is exhiblited in a special case. The third section deals with the op-
timal n-stage return function. The fourth section presents some
counterexamples, and in the fifth section we present the major results.
Speaking loosely we show that the optimal strategy elther searches the
box with maximal value of “ipi/cl or else it never searches that box.
Also, If rewards are equal, Ri = R, then the optimal strategy either
searches the box with maximal a‘pllcl or else it stops. |In the final

section we assume that Ri Z R and precsent a sequence of strategies

converging to the optimal.
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2. Optimal Strategy

A strategy |s any sequence (or partial sequence) § = (dl, ceey Gs) where
6! e (1,2, ..., m} for I=1, ..., sand sef0, |, 2, ...»}, The policy
§ Instructs the searcher to search box 6! at the lth period and to stop

searching if the object hasn't been found after the sth search. (s = 0

means that the searcher stops immediately and s = ® means that he doesn't

stop until he finds the object).

For any strategy § and any P = (CI T p; 20, Zpl =1, let f(P,9)
i be the risk (expected searching cost minus oxpected reward) incurred when
P is the vector of prior probabilities and strategy § is employed. Also

| let f(P) = inf £(P,8). Then it follows from standard arguments (see for
$

instance [1] P. 83) that

‘ (1) f(P) = min {0, |.Tin _ tc‘ - alpiRl + (1 - aipi)f('rip)”
¢ _

where T'P - ((T!P)I’ cees (Tip)m) isl, 2, ..., m, and where

PJ(I - Clipi).| L

(2) ) =
(h-0p 00 -a;p)7  jai

Thus (TIP)J Is just the posterior probability that the object is in box
J glven that a search of | has not uncovered it. We shall say that the
process Is in state P at time t {f P denutes the posterior probability

vector at time t,
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In order to show the existence of an optimal strategy let R = max Ri and
i

consider a related process (the prime process) with c; =< a; =a;, but

with R; = Ri = R. However for this new process we suppose that a penalty
cost of R units is imposed if the searcher decides to stop searching be-
fore finding the object Now It is easy to see that for iny strategy §
which terminates (eithe- by finding the object or by stopping) in finite
expected time we have f(P,5§) = f.(P,G) - R, and since these are the only
strategies we need consider, (any strategy which doesn't terminate in
finite expected time has f(P) = f'(P) = ») it fo!lows that any strategy
optimal for the p. ime process is optimal for the original one.* However,
the prime process is a dynamic programming process with a finite number
of possible actions available at each stage and with non-positive returns
at each stage (since R; <0 i). It then follows from Strauch [&] that
an optimal strategy exists and also that the optimal strategies may be
characterized as thuse strategies which when the process is in state P

chooses one of the actions which minimize the right side of (1), i.e. for

such a 6*. f(p, &%) = £(P) for all P.

The importance of rigorously proving that an optimal policy exists and is
determined by a functional equation ~annot be overemphasized. For example
In the above suppose we relax the condition that ¢, > 0 and let ¢ = 0.
Then if ap > O it is clear that for any strategy § = (61,...,65) #

O, 1,0, ), fe, O, 6, «0ny 8)) < £(P, (8, ...y 8)) (since a

search of | is free) and thus the only possible optimal strategy would be

*The above argument also shows that there is no additioral generality
gained In assuming that a penalty cost c is incurred when the searcher stops
without finding the object, as this process would just be equivalent to the
original one with rewards Ri + ¢ instead of Ri'

. R ,
it D St tinone bt G S kil S =

-~

L Al




Page §

| 6' = (0, 1,1, ...). However f(P,él) = lel and it Is clear that this
need not be maximal. For example If ¢, =0, a, = 1/2, A 1/10, Rl = |0

and G =lha, =1, Py, = 9/10, R2 = 10 then f (P, dl) = | while

2

[ f(p, (1,1, e 12,0,0,00, 000)) - T%-[IO(I-(I/Z)n) + 9(1/2)"] + f%--9 i) %%

Also the strate y determined by the functional equation turns out to be the
! 9 Y q
(non-=opt Imal) strategy §,. (The reascn that the existence proof given above
| 9
' breaks down Is that since ¢, =01t no longer follows that all strategies 6

with Infinite expected termination time have fF(P,8) = =),

Now consider the class A of strategies § = (61, N . 65) for which s = «,
Any policy 8 € A which finds the object with probability I will have
f(P,5) = EGL - f PiR; where L is the searching cost incurred; any § ¢ A
which has positive probability of never finding the object has f(P,8) = =,

Thus among the class of policies which never stop searching until the object

is found the one with minimal expected searchirg cost is best. Thus by

' Blackwell's result the strategy §_ which when in state P searches the box
(or one of the boxes) with the maximal value of aip‘./ci is optimal amorg

l the policies in A.

' Lemma 2.';: |f ailei > ¢, fur some i then no optimal strategy stops

l searching at P = (pl, vee, pm). If aip'Ri 2 ¢, for some | then there is
an optimal strategy which doesn't stop at P.

[

l

1
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From (1) we have that

f(P) <c - alp'Rl + (1 - alpl)f(TlP)

<0+ () -

<0

and so f(P) < 0 and thus no optimal pollicy stops at P. |f o
then fl(P) ¢ apR, + (1

f(P) = f'(P) and so searching | is optimal; if f(P) < 0 then stopping

Is not optimal.

m
Theorem 2.2: |f I cllalkl <1 then §_ Is optimal, i.e. f(P,6.) = £(P)

ju]
for all P,

Proof: For any P, If max(a

strategy which doesn't stop at P.

a9 ) H(T;?)

- u'p|)f(TlP) £ 0. Now if f(P) = 0 than

Q.E.D.

PR - c‘) 2 0 then there exists an optima!l

oztima! strategy to stop at P is for

PR < ¢
> Py < ci/alki

> | < Ecl/ulnl

So If Zc'/aln' < 1 then for every P there is an optimal strategy which

doisn't stop at P. Thus an optimal strategy exists in A which implies

that §_ Is optimal.

for ail i

for all i

Q.E.D.

PRy 2 ¢

So a necessary conditi n for every

U ———

S g ook
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The Optimal Return f(P)

Theorem 3.1: f(P) is a concave funztion of P,

Proof: Let fl(é) be the conditional risk given tha® the object is in i

and strategy § Is employed, i=l, ..., m. Then f(P,§) = Zoif](é). Now
i

let P = AP! + (1 - A)P2, then

f(P) = lgf f(P,8)
- Inf FOP + (1 - P2, §)
= igf £ 0P+ (1 - 0)P7)f(6)
20 inf 2 PLF,(8) + (1= A) inf 1 P2¢ . (6)
<A FPY) + (1 - MFEPY

Q.E.D.

Corollary 3.2: The optimal stop region S = {P : f(P) = 0} is convex.

Proof: Suppose P = el s (- A)P2 and f(P') - f(PZ) = 0. Then

f(P) < 0 by (1) and f(P) > 0 by the above.

Q.E.D.
Let
(3) £,1°) = min {o, mgn:ci 3 aipiRi:
f (P) = min {o, m:nzci - a;p R, + (l-aipi)fn_l(TiP)=; no>

Thus fr(P) Is Just the minimal risk incurred if the searcher is allowed at

most n searches. Clearly fn(P) > fn+'(P) > f(P) for all n, all P, and it
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seems reasonable that fn(P) + f(P) as n + . This Is shown In the

— {

following.
Letting c = m:n ¢;» D = max (R| - cl)
|
D2
Theorem 3.3: fn(P) - f(P) < == all n, all P,

*
Proof: Let § be an optimal strategy, let T be the random number of times

® * *
¢ searches before terminating, and let Gn be § terminated at n, i.e.
* * "

Gn - (Gl ces 6"n). Then
(4) £(P) = £(P,6") = 56*[x | T<nlp [T < n] + 56*[x | 7> nlP [T > n] i
and

(5) f.(P) _<_f(P,6:) - 56*[x | T<alp [T < n]+ 56*[x | T>nlp [T > n]
n

where X denotes the total cost Incurred (and everything Is understood to be

conditional on the prior probability vector P). Thus

(6) f (P) - f(p) < Es*[x | T>nl =€ Ix | T>nlfP[T>n)]
§
n

<0 Pr[T> n)
To get a bound on Pr[T > n] we use (4) to get
(7) 0> f(P) >-0P [T<n]+ (-D+nc)P (T >n]

= =D +ncP T>n]
or
(8) Pr[T > n] < 0/nc

The result follows from (6) and (8). Q.E.D.
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“orollary 3.4: |If QIRI < for all i=i, 2, ..., m then f(P) = 7, i.e.

:he policy which never searches is optimal.

Proof: It follows from (3) that fl(P) = 0, and by induction that

fn(P) 2 0 for all n, and thus by the above f(P) = 0. N.E.D,

The above Corollary may also be proven directly by letting e' be the
m-vector of all zeroes except for a one in the ith spot. |If aiRi <<

for all | then by (1) It follows that f(el) =0, i=l, ..., m; and thus

by concavity f(P) = 0.
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Counter-Examples
Consider the following three conjectures:
1. If ¢ > R' then an optimal strategy wil!i iiever search box 1.

2. |f an optimal strategy doesn't stop at “ then It searches a box
with maximal alpl/c‘.

3. (f mis the number of boxes then an m-stage look ahead strategy Is
optimal; where an m-stage look ahead strategy s defined as any
strategy which stops at P If f (P) = 0, and searches the 1P box

at P If fM(P) -c - alplkl + (1 - “lpl) fm.|(TlP).

We shall now give examples showing that each of these conjectures need

not hold.

Example 1: a = | “2 « |
P' = 3/b P2 = 1/4
¢ - 5 c, = 10
Rl =0 R2 = 210

If the searcher first searches 2 and then acts optimally his risk is
10 - %—2'0 ®» =170/4; while if he first searches 1 and then acts opti-
mally his risk Is 5 - % 200 = =45 < -170/4., Thus the optimal strategy

starts by searching 1,

Example 2: a = 1 a, = |
Py = 3/4 Py = 1/
¢, = 10 ¢, v 10
R‘ = 0 R2 = 210

-
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It the scarcher first scarches 1 then his mivimal risk is 10 = % 200 = -40;
while if he first searches 2 his minimal risk is 10 - % 210 < -40. Thus

. , . _ 3 |
the optimal strategy starts by searching 2. However a'p'/c. ol

azpz/cz.

Example 3: a, = ] a, = .65
P'= L sz 6
¢ = 50 c2 = 50
Rl = |00 R2 = 100

It can be checked directly that fz(.h, .6) 0 and so the two-stage look

ahead strategy stops. However

.35(50 - 100(.65))] < 0

+

f3(.h. .6) = .4(-50) + .6[100 - (.65)100

and so the two-stage look ahead strategy is not optimal.

Thus none of the conjectures need be true. We will later show, however,

that in a special case (Ri Z R) conjectures | and 2 are in fact true.
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5. Maln Theorems

For any strategy & let (i, J, 6) be the str :ecv which first searches i

then ] and then follows strategy 6.
We shali need the following
-emma 5.1: For any strategy § such that f{P,J) < «

£(P(1,1,6)) > F(R(J,1,6))

<

Iff alpl/cl : °Jpj/°j

>
f a,p 1 -a.p.
Ercefs f(g("j’c)) R alleI + (l-a,p,); cin RJ -a,p 4 TéElB_ f(TJTiP.'S)
b Z " iPi
L
. Fo o NP L - P o

now since T.T. P = T T P it follows that

J ]

f(P’("JDG)) - f(P,(j,i,G)) - GJPJC - aip c.

i ]

Q.E.D.

Notatlion: For any policy § = (6', ok 653 and t < s, let

Thus 5 . is just the posterior probability vectcr given that § is employed
*

and the item has not been found after t searches.

o0 . e 0 -
akm | oo L e o e e v ———

.
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Theorem 5.2: |If a.po/c = max « pO/c then
—eoren 2.2 iPirey T max aR e

* *
(a) If a‘p?RI > ¢ then there is an optimal strategy § having Gl = |,

*
(b) If there does not exist an optimal strategy with 6| = | then no

optimal strategy ever searches I.

Proof: (a) We first show that there is an optimal strategy & having
*
Gk = | for some k < s. For suppose that no optimal strategy ever searched

*
I; then for any optimal strategy ¢ , (po* )i z.p? for all t and so by

]
Lemma 2.1 the optimal strategy nced not stop. But then §_ Is optimal

*
and so there would be an optimal strategy with Gl = |, Thus there is an

* *
optimal strategy 85 which searches i. Let k be the first 2ime § searches

. If

C
cpy =l

k # 1 then since (po* )J - 0 where cj <c
§ k=2 c,p; A -
0 0
it follows that afp i/ci = max a.lp”, ./c.; and so by Lemma
6 k-2 I\ 6" k-2)d
*
5.1 there is an optimal strategy with 6k-l = |, By inducticn we see that
*
there is an optimal strategy with dl = .
*
(b) We have shown by the above that if an optimal strategy &

* *
has Gk = | for some k then there is an optimal strategy with 6| =,

Q.E.D.

Corollary 5.3: |If aip?/c‘ > aJp?/cj for j # i then

*
(a) every optimal strategy has §, =i

or

(b) no optimal strategy every searches i.

[
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Proof: Follows in the same manner as In the previous Theorem.

Note that [f the state of the process at time t is P then from that point
on we can conslder the process as starting anew with prior probability
vector P. Thus at time t it Is optimal to search the nox with the
largest present value of ap/c or else that box Is never searched from
that polint on. We are able to prove a stronger result In the special
case where all rewards are equal.
Theorem 5.4: Suppose R, 2R for all I. If a'p?/cl = max ajp?/cJ then
elther J
(a) there Is an ootimal strategy with 6: - !

or
(b) the only optimal strategy is the one which does not search, i.e.

s =0,

* * * *
Proof: Let § = (él, ceey 65) be an optimal strategy. If § ever searches
| then we can show by successive permutations (as in Theorem 5.2) that there
* *
Is an optimal strategy with Gl = [. If § never searches i then s < =, for

*
if 6§ didn't stop and never searched i then it would have infinite risk and

*
so wouldn't be optimal. Suppose now that s ¥ 0 and let k = 65. Since k will
be the last search made it follows that ak(po* )k R > cy (or else it
§ ,s-1
would be bette: .... *~ make the last search). But since 6* never searches
[ Tt follows that(p° 'po and thus
* i \ * k
s, SV 6 ,s-1/"
0 - 0 !
Py Py
0 0 0 0 0
a (P ) a.p (P % ) a, p p
i 6*,5 i iri & s i k" k 6*.s~l k /R
c C. 0 - ¢ 0 :
i i P k p

L - e it i, . 2 B of
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But then by Lemma 2.1 it would be optimal to search i at time s + |, and
*
so by the above there would be an optimal strategy with Gl - |,
Q.E.D.

In a similar manner we may prove the following

Corollary 5.5: |If Ri IR and if aip?/ci # max ajp?/cj, then any strategy

§ with Gl = | is not optimal.

Proof: Let £ be such that ang/cc = max ajp?/cj. If § searches L at some
time then by successively permuting and using Lemma 5| it follows that we
may (strictly) improve upon 8. If & never searches % then by the same

reasoning as used in the above Theorem it follows that § can't be optimal.

Q.€E.D.

Thus when all rewards are equal it is either optimal to search a box with

the maximal value of aipi/ci or else it is optimal to stop.

In [3] Chew considered the problem where there is no reward given for
finding the object but where there is a penalty cost C incurred if the
searcher stops without finding the object. He also supposed that a = 0
and p? > 0. (Thus there is positive probability that the object is in

*
the first box but with probability one a search would overlook it.)

*Actually Chew supposed that gp? < 1. However this is clearly
i
equivalent to having Zp? = | and having a box with an overlook probability

of one.
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He showed that if ¢, | then the optimal strategy either searches the
box with maximal alp'/cl or else stops. However, as was previously pcinted
out, this problem is equivalent to the one we've considered with Ri = C.

Thus Theorem 5.4 may be considered as an extension of Chew's result to

non-constant costs and to general overlook probabilities.
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Approximations to Optimal Strategy

In this section we suppose that R, = R, and exhibit a sequence of

strategies which converge to an optimal strategy.

* # *

Let § = (6;, S 65) be an optimal strategy which either when in state

P stops If f(P) = 0 or else searches a box with maximal value of a‘pi/c‘.
*

Let T be the random number of stages § searches before terminating, and

recall that ¢ = min ;- We shall need the following:
i

n
Lemma 6.1: Pr(T > n) _<_(I - fﬁa—) for all n

Proof:

The minimal value of max aipi/cl Is achieved by that vector P having
i

(9)  aypy/ey =agpy/ey = ool map /ey

and thus

(10) min max a,p,/c., =
P i U . c‘/ai

*
Now each time § searches a box with maximal value of aipi/ci. Thus each

time 8% searches a box (say box j) the probability a.p. the item will be
i i®

found is such that
c

C
I R Pt SO
i

i ci/ai

The result follows immediately.
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Now let §" = (6,. 100 6s ) be the strategy which when in state P stops

n
if fn(P) = 0 or else searches a box with maximal value of aipi/ci, i.e.
s =mind{k: f (po* )- 0Y. Since f (P) ¢+ f(P) It follows that
n " s* « n
’

sn + sasn ¢ o,

Recalling that D ; max (R - c') = R - ¢ we have

n+s
Theorem 6.2: f(P,5") < f(p) + 001 - c/Ecl/ai) " for all P, all n.

Proof: f(P,8") - £{°) = -f(P . )Pr(T > )
6,8
n

f [P = f(P ) P (T>s)
np * * r n
( § 'sn) § **n

D Pr(T > n) Pr(T > sn)

A

where the last inequality follows from (6). The result then follows from

Lemma 6.1,
Q.E.D.

In order to effectively apply the policies §", n > 1, we need to be able
to characterize the continuation sets An = =P: fn(P) < 0; . These sets

can be constructed as follows:

alp. 2. . |
(12) A l P: S iic -apR< O‘

where




P
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(13) B, = : P: 3 i,): ¢ - u‘le + (l-cv,ipi)[cj - aj(TlP)jR] < 0;
-1 ! i=j
Noting that (Tip)j - (l-aiéij)pj(l-aipi) where GU - -

we can write

T - _ _ 2
(14) 82 | P: 3I,J. <, aipiR + cJ. aijR C!ipicj + GJG.UPJR <0
Simitarly
A3 =- A2 U 83
where

15) 83 - {P: ]i,j,k: ¢; - apR+ (!-chipi)[cj-uj (TiP)jR +

(l-aj(TiP)j)(ck-uk(TjTiP)kR)] < o}

- {P: 15 i k- - - .
{P. 3ihdok: <, aipiR + cJ. Gjij + kakR

e LI (op, + C"J.pj)ck + °§5 ijpj(R +c)

2 - a3 < |
+a ka(GJk + Gik) o Gik ij PR O} !

s
Similarly the other A: =A U B, may be obtained. Also we may let

(16) 8l =a
F o dp. 3445 = = = <
8 {P._J idj: <, aipiR + cJ. GJ.pJ.R <7»ipic‘i 0:
- v 3l dihk - - -
8 {P._‘ idjhk: <, aipiR + cj Gij.R te kakR
- . <
4Py - (%py + %pidey °:

I N :

Then Bn C Bn and we may approximate An by U Bi' We also note that

i=l

1 |
B' = Al and 82 - AZ'
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